We live along the shores of something GREAT - Great Salt Lake.

And whether we preceive it or not

During its relatively short life as a remnant of ancient Lake Bonneville

It has affected all of us.

From the ancients who lived in the Great Salt lake wetlands

To the growing populations of today and tomorrow

The Lake affect continues to modify, influence and impress our lives.

 

Lynn de Freitas, FRIENDS Executive Director

It is a desert of water in a desert of salt and mud and rock, one of the most desolate and desolately beautiful of regions. Its sunsets, seen across water that reflects like polished metal, are incredible. Its colors are of a staring, chemical purity. The senses are rubbed raw by its moonlike horizons, its mirages, its parching air, its moody and changeful atmosphere.

Wallace Stegner, "Dead Heart of the West" in American Places, 1981

Click here to read the resolution.

Many thanks to those who worked hard to recognize the Lake formally!

The Utah Division of Water Quality (DWQ) has issued a draft modification for the Ground Water Discharge Permit (UGW350011) for the proposed expansion of the Kennecott Utah Copper Tailings Impoundment. Public comments are due August 12, 2013. The conservation community has a number of concerns about the adequacy and the timing of this proposed permit and is calling on DWQ to withdraw the draft permit until sufficient information is available to fully inform the permitting process and the public.

DWQ’s proposed approval now of this permit modification is premature. Approval of the enlarged footprint of the Tailings Impoundment is still under consideration by the U.S. Army Corps of Engineers, and it is likely that the Corps will require changes to that proposal which would make this permit modification moot. The Draft Environmental Impact Statement for the project will not be issued by the Corps until sometime next year, with a Final EIS unlikely until late 2014 or 2015. Both DWQ’s decision and the public comments on that decision should be informed by information produced by the EIS.

The proposed expansion is a massive project requiring several additional major, time-consuming approvals, including permission to realign four miles of the Union Pacific railroad tracks and to build an overpass bridge along 7200 West. The groundwater permit modification is not urgent.

DWQ admits that arsenic levels in the shallow groundwater have exceeded water quality standards, but refuses to consider whether the arsenic in these aquifers is contributing to the high levels of arsenic in the Great Salt Lake’s Gilbert Bay. There is no quantification of the level of arsenic pollution cased by the Tailings Impoundment or historic operations in the area – nor any plans to ascertain those levels.

DWQ makes unsubstantiated assertions that there will be no significant degradation of groundwater quality without defining what that means or suggesting any plans to prevent further degradation. DWQ admits that the weight of the Tailings Impoundment (at over 290 feet high!) will cause movement of waters in the tailings through the Bonneville Clay layer into the underlying aquifers.

DWQ makes unjustified assertions that the passive use of the Bonneville Clay layer as a liner constitutes “Best Available Technology” for minimizing discharges of pollutants, thus exempting Kennecott from installing additional liners under the expansion. This despite knowing that the clay is thin in some locations and missing in others, and that contamination of groundwater has occurred.

There are significant questions whether the waste streams authorized under this permit for placement in the Tailings Impoundment are exempt from treatment as hazardous waste (under RCRA).

There are questions whether there will be adequate measures put into place to prevent acidification of the tailings materials long term and after KUC’s mining ceases.

DWQ should wait until the completion of the EIS process - there is no reason for DWQ to issue approval of this permit at this time.

UDOT is proposing to build a $600M+ freeway through West Davis and Weber Counties. The high speed 4 lane elevated freeway will cut through neighborhoods, family farms, wildlife habitat and wetlands while increasing vehicle miles traveled, exacerbate poor air quality conditions, impact water quality, and change the landscape forever.

Attend public hearings on the proposed West Davis Freeway and let your voice be heard.

A B C D-E-F-G H-I J K L M-N-O P-Q R S T-U V W-X-Y-Z

A

Adler, RW. 1999. Toward Comprehensive Watershed-Based Restoration and Protection for Great Salt Lake, University of Utah College of Law, Utah Law Review Vol. 1999 Number 1, 99-204 p.

Arnow, T. 1980. Water budget and water-surface fluctuations of Great Salt Lake. In J.W. Gwynn (ed.), Great Salt Lake: a scientific, historical and economic overview. Utah Geological and Mineral Survey, Salt Lake City: 255-264.

Arnow, T and DW Stephens. 1990. Hydrologic characteristics of the Great Salt Lake, Utah: 1847-1986: US Geologic Survey Water-Supply Paper 2332, 1 plate, 32 p.

B

Barrie, A, JE Davies, AJ Park, and CT Workman. 1989. Continuous-flow stable isotope analysis for biologists. Spectrophotometry 4:44-52.

Berthélémy-Okazaki, NJ and D Hedgecock. 1987. Effect of environmental factors on cyst formation in the brine shrimp Artemia. In P. Sorgeloos, D.A. Bengtson, W. Decleir & E. Jaspers (eds), Artemia research and its applications. Vol. 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren. Belgium: 167-182.

Birch, LC. 1948. The intrinsic rate of natural increase of an insect population. J. anim. Ecol. 17:15-26.

Brown, RA. 1980. Reproductive pattern and mode in the brine shrimp. Ecology 61: 466-470.

Brown, RA. 1982. The costs of reproduction in brine shrimp. Ecology 63:43-47.

C

Casella, G. and R.L. Berger. 1990. Statistical inference. Brooks/Cole. Pacific Grove, 650 pp.

Carlson, RE. 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361-369.

Cooper, SD, DW Winkler, and PH Lenz. 1984. The effect of grebe predation on a brine shrimp population. J. anim. Ecol. 53:51-64.

Conte, FP, RS Jellison and GL Starrett. 1988.Nearshore and pelagic abundances of Artemia monica in Mono Lake, California. Hydrobiologia 158: 173-181.

Christensen, RC, DW Stephens, GE Pyper, HF McCormack, and JF Weigel 1984. Quality and quantity of runoff and atmospheric deposition in urban areas of Salt Lake County, Utah, 1980-81: US Geological Survey Water- Resources Investigations Report 84-4011, 223 p.

Crumpton, WG. 1987. A simple and reliable method for making permanent mounts of phytoplankton for light and fluorescence microscopy. Limnol. Oceanogr. 32:1154-1159.

D

Dana, GL and PH Lenz. 1986. Effects of increasing salinity on an Artemia population from Mono Lake, California. Oecologia 68:428-436.

Dana, GL, R Jellison and JM Melack. 1990. Artemia monica cyst production and recruitment in Mono Lake, California, USA. Hydrobiologia 197: 233-243.

Dana, GL, R Jellison, and JM Melack. 1995. Effects of different natural regimes of temperature and food on survival, growth and development of Artemia monica Verrill. J. Plankton Res. 17:2117-2130.

D'Agostino, A. 1980. The vital requirement of Artemia: physiology and nutrition. In G. Persoone, P. Sorgeloos, O. Roels & E. Jaspers (eds), The brine shrimp Artemia, 2. Physiology, biochemistry, molecular biology. Universa Press, Wetteren, Belgium: 55-82.

H

Hammer, UT. 1986. Saline lake ecosystems of the world. Dr. W. Junk Publishers, Dordrecht, 616 pp.

Holm-Hansen, O and B Riemann. 1978. Chlorophyll-a determination: improvements in methodology. Oikos 30: 438-447.

J

Javor, B. 1989. Hypersaline environments: microbiology and biogeochemistry. Springer-Verlag, Berlin, 328 pp.

Jellison, R and JM Melack. 1993. Algal photosynthetic activity and its response to meromixis in hypersaline Mono Lake, California. Limnol. Oceanogr. 38: 818-837.

K

Kuruppu, MM and SUK Ekaratne. 1995. Ecology and population structure of the Artemia parthenogenetica population inhabiting a major saltern in Sri Lanka. Int. J. salt Lake Res. 4:117-131.

L

Lenz, PH. 1984. Life-history analysis of an Artemia population in a changing environment. J. Plankton Res. 6:967-983.

Lenz, PH. 1987. Ecological studies on Artemia: a review. In P. Sorgeloos, D.A. Bengtson, W. Decleir & E. Jaspers (eds), Artemia research and its applications, 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren. Belgium: 5-18.

Lenz, PH and GL Dana. 1987. Life-cycle studies in Artemia: a comparison between a sub-tropical and a temperate population. In P. Sorgeloos, D.A. Bengtson, W. Decleir & E. Jaspers (eds) Artemia research and its applications, 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren. Belgium: 88-100.

M

Marcarelli, AM, MD Mills and WA Wurtsbaugh. 2001. The Great Salt Lake doesn't stink... But Farmington Bay does! FRIENDS of Great Salt Lake Newsletter 7(2): 5, 13; 7(4):6.

McCormack, HF, RC Christensen, DW Stephens, GE Pyper, JF Weigel, and LS Conroy. 1983. Surface water and climatalogic data, Salt Lake County, Utah, Water Year 1981, with selected data for water years 1980 SN 1982: US Geologic Survey Open-File Report 83-694, 586p.

Melack, JM and R Jellison. 1998. Limnological conditions in Mono Lake: Contrasting monomixis and meromixis in the 1990s. Hydrobiologia 384:21-39.

Montague, CL, WR Fey and DM Gillespie. 1982. A causal hypothesis explaining predator-prey dynamics in Great Salt Lake, Utah. Ecological Modeling 17:243-270.

P

Persoone, G and P Sorgeloos. 1980. General aspects of the ecology and biogeography of Artemia. In G. Persoone, P. Sorgeloos, O. Roels & E. Jaspers (eds), The brine shrimp Artemia, 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren: 3-23.

Post, FJ. 1981. Microbiology of the Great Salt Lake north arm. Hydrobiologia 81:59-69.

Pyper, GE, RC Christensen, DW Stephens, HF McCormack, and LS Conroy 1981. Surface-water and climatological data, Salt Lake County, Utah. Water Year 1980: US Geological Survey Open-File Report 81-1111, 167 p.

R

Reiss, CS, IA McLaren, and PA Avendaño. 1999. Utility of storage lipid volumes in inferring recent trophic history of copepods. Can. J. Fish. aquat. Sci. 56:2444-2449.

S

Savage, A and B Knott. 1998. Artemia parthenogenetica in Lake Hayward, Western Australia. I. Interrupted recruitment into adult stages in response to seasonal limnology. Int. J. Salt Lake Res. 7: 1-12.

Simms, Steven R and Mark E. Stuart. 2002. Ancient American Indian Life in the Great Salt Lake Wetlands: Archaeological and Biological Evidence In Great Salt Lake, Utah 1980 Through 1998, edited by J. Wallace Gwynn, Utah Geological Survey Publications, Salt Lake City.

Simms, Steven R. 1999. Farmers, Foragers, and Adaptive Diversity: The Great Salt Lake Wetlands Project. In Understanding Prehistoric Lifeways in the Great Basin Wetlands: Bioarchaeological Reconstruction and Interpretation, edited by B.E. Hemphill and C. S. Larsen, pp. 21-54. University of Utah Press, Salt Lake City.

Simms, Steven R. and Anan W. Raymond. 1999 . No One Owns the Deceased! The Treatment of Human Remains From Three Great Basin Cases. (Feb 00),. In Understanding Prehistoric Lifeways in the Great Basin Wetlands: Bioarchaeological Reconstruction and Interpretation, edited by B.E. Hemphill and C. S. Larsen, pp. 8-20. University of Utah Press, Salt Lake City.

Sorgeloos, P, P Lavens, P Léger, W Tackaert, D Versichele. 1986. Manual for the culture and use of brine shrimp Artemia in aquaculture. State University of Ghent. Faculty of Agriculture, 319 pp.

Stephens, DW 1969. The physical and chemical environmental requirements of Trichoptera in the Weber River, Utah. MS thesis, Univ. of Utah, 72 p.

Stephens, DW and DM Gillespie, 1972. Community structure and ecosystem analysis of the Great Salt Lake. pp. 66-72, IN: JP Riley, ed., The Great Salt Lake and Utah's Water Resources, Proc. First Ann. Conf. Utah Section American Water Resources Assoc., Utah Water Research Lab., Logan.

Stephens, DW 1974. Limnological considerations of the Great Salt Lake, Utah. Ph.D. Dissertation, Univ. of Utah, 123 p.

Stephens, DW 1976. Liquid scintillation counting of filtered algae in primary production studies. US Geological Survey Journal of Research 4(6):753-756.

Stephens, DW and DM Gillespie. 1976. Phytoplankton production in the Great Salt Lake, Utah and a laboratory study of algal response to enrichment. Limnology and Oceanography 21(1):74-87.

Stephens, DW and DM Gillespie. 1977. Some aspects of plankton dynamics in the Great Salt Lake, Utah. Pp. 401-409, In: DC Greer, ed., Desertic Terminal Lakes, Utah Water Research Lab., Logan.

Stephens, DW. 1984. Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah: US Geological Survey Water-Resources Investigations Report 84-4056, 56 p.

Stephens, DW. 1984. Water-quality investigations of the Jordan River, Salt Lake County, Utah, 1980-82: US Geological Survey Water-Resources Investigations Report 84-4298, 45 p.

Stephens, DW. 1988. Great Salt Lake: An expanding sea in the Utah desert: US Geological Survey Yearbook for 1986, pp. 77-82.

Stephens, DW and T Arnow. 1988. Fluctuations of water level, water quality and biota of Great Salt Lake, Utah, 1847-1986: p. 181-194 In: RS Kopp and RE Cohenour eds., Cenzoic geology of western Utah, Utah Geologic Assoc. Publ. 16.

Stephens, DW and B Waddell. 1989. Selenium contamination from irrigation drainage in western United States with emphasis on Utah: pp. 165-181 In: Geology and hydrology of hazardous waste, mining-waste, waste water, and repository sites in Utah, Utah Geologic Assoc. Publication 17.

Stephens, DW. 1990. Changes in lake levels, salinity and the biological community of Great Salt Lake Utah, USA, (1947-1987): Hydrobiologia 197:130-146.

Stephens, DW. 1992. Selenium contamination of waterfowl areas in Utah and options for management, p. 301- 311 In Robarts RD and ML Bothwell, eds., Aquatic ecosystems in semi-arid regions Implications for resource management: National Hydrology Research Institute Symposium Series 7, Environmental Canada, Saskatoon.

Stephens, DW and LJ Gerner. 1996. Utah wetland resources: U.S. Geological Survey Water-Supply Paper 2425, p. 375-380.

Stephens, DW. 1998.Salinity-induced changes in the aquatic ecosystem of Great Salt Lake, Utah: pp. 1-8 in Pitman, J., and A. Carroll, eds., Modern and Ancient Lakes, Utah Geological Association, Salt Latke City, Utah.

Stephens, DW. 1998.Salinity-induced changes in the aquatic ecosystem of Great Salt Lake, Utah: pp. 1-8 in Pitman, J., and A. Carroll, eds., Modern and Ancient Lakes, New problems and perspectives, Utah Geological Association, Salt Latke City, Utah.

Stephens, DW and P Birdsey. In press. Population dynamics of the brine shrimp, Artemia franciscanis, in Great Salt Lake and regulation of commercial shrimp harvest. Hydrobiologia xxx.

Sterner, RW, DD Hagemeier, WL Smith, and RF Smith. 1993. Phytoplankton nutrient limitation and food quality for Daphnia. Limnol. Oceanogr. 38:857-871.

Sturm, PA, GC Sanders, and KA Allen. 1980. The brine shrimp industry on the Great Salt Lake. In J.W. Gwynn (ed.), Great Salt Lake: a scientific, historical and economic overview. Utah Geological and Mineral Survey, Salt Lake City: 243-248.

T

Tayler, PL, LA Hutchinson, and MK Muir. 1980. Heavy metals in the Great Salt Lake, Utah. In J.W. Gwynn (ed.), Great Salt Lake: a scientific, historical and economic overview. Utah Geological and Mineral Survey, Salt Lake City: 195-200.

Torrentera, L. 1993. Ecology and evolution of Yucatan peninsula Artemia. Ph.D. thesis. University of Wisconsin-Madison, Wisconsin, USA, 104 pp.

V

Vanhaecke, P and P Sorgeloos. 1980. International study on Artemia. XIV. Growth and survival of Artemia larvae of different geographical origin in a standard culture test. Marine Ecology - Progress Series 3: 303-307.

W

Wear, RG and SJ Haslett. 1986. Effects of temperature and salinity on the biology of Artemia franciscana Kellogg from Lake Grassmere, New Zealand. 1. Growth and mortality. J. exp. Mar. Biol. Ecol. 98:153-166

Wear, RG, SJ Haslett, and NL Alexander. 1986. Effects of temperature and salinity on the biology of Artemia franciscana Kellogg from Lake Grassmere, New Zealand. 2. Maturation, fecundity, and generation times. J. exp. Mar. Biol. Ecol. 98:167-183.

Wear, RG and SJ Haslett. 1987. Studies on the biology and ecology of Artemia from Lake Grassmere, New Zealand. In: P. Sorgeloos, D.A. Bengtson, W. Decleir & E. Jaspers (eds), Artemia research and its applications, 3. Ecology, culturing, use in aquaculture. Universa Press. Wetteren, Belgium: 101-133.

Wetzel, RG and GE Likens. 1990. Limnological analyses, 2nd ed. Springer-Verlag. New York, 391pp.

Wirick, CW. 1972. The Dunaliella-Artemia plankton community of the Great Salt Lake, Utah M.S. Thesis, Dept. of Biology, University of Utah, 20 pp.

Wurtsbaugh, W and J Cech. 1983. Growth and activity in Gambusia affinis fry: Temperature and ration effects. Trans. am. Fish. Soc. 112: 653-660.

Wurtsbaugh, W. 1988. Iron, molybdenum and phosphorus limitation of N2 fixation maintains nitrogen deficiency of plankton in the Great Salt Lake drainage (Utah, USA). Verh. int. Ver. Limnol. 23:121-130.

Wurtsbaugh, WA. 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89:168-175.

Wurtsbaugh, WA and TS Berry. 1990. Cascading effects of decreased salinity on the plankton, chemistry, and physics of the Great Salt Lake (Utah). Can. J. Fish. aquat. Sci. 47: 100-109.

Wurtsbaugh, WA, and ZM Gliwicz. In press. Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah. Hydrobiologia.

The 2018 Great Salt Lake Issues Forum will be May 9,10 + 11th at the University of Utah Fort Douglas Officers Club. The program title is Lake Elevated. Keeping the Lake Great. 

Since 1996, we have been hosting the GSL Issues Forum as a way to encourage constructive dialogue about the future of the Lake’s ecosystems and its resources, and to illuminate the complexities involved in research, management, and planning for the Lake. We do this by exploring the Lake from many different angles and in many different contexts--far beyond its resource development potential--to emphasize its ecological value as well as the intrinsic value it contributes to our history, culture, and spirit. And because Great Salt Lake is hemispherically important to millions of migratory birds, the forum reaches beyond our own backyard into the region, the hemisphere, and to global communities with saline systems to learn from others who are working with similar challenges. 

With our growing awareness of trends in near record low elevations of the Lake coupled with less than stellar snowpack conditions and climate change, the time is ripe to bring people together to engage in timely and productive discussions about Utah’s water future and how Great Salt Lake fits into that picture. 

Be a part of something Great as we bring together the artists, historians, scientists, educators, policy makers, academics, and industry representatives, all of whom recognize the tremendous asset this unique ecosystem is to our culture, our community, and our consciousness. 

More program details coming soon. 

Issues Forum 5

 

2016issues

 

issues forum swans

 

2012 GSLIssues Postcard invite v2 Page 1

 

2010invite

 

 

Great Salt Lake Research - Good Science Informs Good Management  

The GSL Ecosystem is a complex and unique saline ecosystem that is locally, regionally, hemispherically, and globally important. It provides a valuable mix of habitats from islands, open water, wetland complexes and uplands for native plant and wildlife populations. It also provides critical resting, staging and nesting capacity for over 260 avian species and millions of migratory birds. 

The Lake is an important economic contributor to the State of Utah through a variety of ecosystem services that include mineral extraction, brine shrimp, recreation and tourism among others. It provides $1.3 B annually to the state’s economy. 

The Division of Forestry, Fire and State Lands in the Department of Natural Resources has jurisdictional responsibility for managing the Lake sustainably for future generations. The system is a hotbed of potential research opportunities that can help inform effective management decisions toward that end.

What follows are examples of some of the resources that are in place to help identify research needs and fund proposals that generate valuable science and insights about the system. These serve to increase our understanding so we can work to protect Great Salt Lake.  

Meetings for all of these standing bodies are open to the public.  We encourage you to attend these meetings and share your voice.  In addition to good science, good management is informed by a well-educated community.

 

Utah Division of Forestry, Fire & State Lands

 

Additional Great Salt Lake Organizations 

 

 

 


 

 

FRIENDS of Great Salt Lake established the Doyle W. Stephens scholarship to celebrate Stephens' remarkable scientific contributions toward understanding the Great Salt Lake Ecosystem. This scholarship provides support to undergraduate or graduate students engaged in new or on-going research that focuses on Great Salt Lake and its ecosystem. For 2019, FRIENDS will award two $1,000 scholarships, one to a graduate researcher and one to an undergraduate researcher.

Eligibility: Applicants must be undergraduate or graduate students currently enrolled at an accredited college or university. Individuals who have previously received this award are not eligible. The award may be used to support laboratory or field research, attendance at professional meetings, or other activities that further the understanding or protection of the Great Salt Lake ecosystem. Research located anywhere in the Great Salt Lake watershed can qualify for this award. We will consider projects from any academic field (for instance: ecology, biology, chemistry, physics, geography, geology, urban planning, social sciences, communications, education, economics, tourism, engineering, etc.). 

The 2019 Doyle W. Stephens Scholarship Applications are now open and will close March 15, 2019. Click here to access the application.

 

History of Dr. Doyle W. Stephens and the scholarship created in his name.

Doyle Stephens was born in Ogden, Utah, in 1944. He received his BS in Biology from Weber State College in 1967, his MS in Entomology in 1969 and his PhD in Limnology from the University of Utah in 1974.

At the time of his death in May, 2000, he had been a research hydrologist for the U.S. Geological Survey for nearly 20 years. In 2001, he was posthumously awarded the Governor's Medal for Science and Technology.

Doyle Stephens made significant contributions toward public awareness of critical issues relating to Utah's natural resources and environment. Of particular importance were his efforts to increase public knowledge and awareness of the Great Salt Lake Ecosystem. As a contributor to the state's Great Salt Lake Ecosystem project, Doyle's work on Great Salt Lake shrimp ecology helped increase understanding about population dynamics of the shrimp in the lake and factors affecting the structure and density of the population.

"Stephens leaves a broad and deep body of scientific work. His legacy is that his work's contribution to the environment, to the economy, and to the quality of life in Utah will not diminish over time but will continue to grow," says Don Leonard, President, Utah Artemia Association.

Another colleague observed: "Icebergs don't happen in Great Salt Lake, save one. Before he left us so prematurely, we only got to see the tip of Doyle Stephens' impact on the work of almost every other Great Salt Lake investigator. As time passes, we will begin to understand the extent of Doyle's work and the encouragement he lent to others to wonder and search along with him."

 

Click here to donate. With your help, FRIENDS can continue to support and promote research critical to the conservation of Great Salt Lake.

Donations in Memory of Don Mabey Thank You To Our 2017 Donors  Thank you to our 2016 Donors  Thank you to our 2015 Donors 
Genevieve Atwood  Lynn & Bradley Carroll Jim Carter Great Salt Lake Brine Shrimp Cooperative, Inc. 
Jim Gremillion  Gail Blattenberger Jim and Edna Ehleringer Jennifer P. Speers
Pam Gremillion  Robert Baskin & Lisa Watts Baskin Jody Gunderson & Bill Heeschen Vincie Giles
Mike Wilson  Joe Gardner & Nancy Bush Vincie Giles Jim and Edna Ehleringer
Snow, Christensen, and Martinaeu   The Nature Conservancy Joseph Hicks John & Ann O'Connell
Clark P. Giles  Joanna Endter-Wada Frank Jarvis Dr. Jack Schmidt
Pam and Willy Littig  Ali Sabbah Bill Trevithick Kenneth Sassen
The Ronald Wilden Living Trust  Great Salt Lake Brine Shrimp Cooperativ, Inc. Joanna Endter-Wada Brian Nicholson
Ann Floor    William and Donna Vogel Jody Gunderson & Bill Heeschen
Julia Reid and Jim Lunbeck   Bruce and Kathy Waddell Bonnie Baxter & Donald Clark
Paul Jewell     Vince & Fu-Yuan Ciricola
Chris and Sydney Fonnesbeck      Nancy Bush & Joe Gardner
Alissa and Ian Schofield      Jean Francois S. Van Huele and Susan Chasson
J. Emerson Mabey Family      Lynn and Bradley Carroll
Micheal and Galen Weiser      Terry Massoth and Lyle Wilson
      Kathleen Anderson
      Don and Kayleen Paul
      Daniel Bedford
      Joseph and Constance Gates
      Dave Stanley

Doyle W. Stephens Scholarship Recipients 

2003 - Henry Hyochang Lee, Ph.D. student, University of Utah "The economics of the brine shrimp resource in Great Salt Lake"

2004 - Ashlee Allred, Undergraduate, Westminster College "Phytoprotective pigment production by Great Salt Lake microbes"

2005 - Carla Koons Trentelman, Ph.D. student, Utah State University "Place attachment among neighbors of Great Salt Lake and its environs"

2006 & 2007 - Misty Riddle, Undergraduate, Westminster College "Microbial Influence in the Great Salt Lake: Identification of Great Salt Lake Microbes Associated with the Brine Shrimp, Artemia Franciscana"
  
2008 - Christy Cottrell, Undergraduate Weber State College "Metagenomic diversification of Great Salt Lake Brine Flies"
 
2009 - Gregory T. Carling, Ph.D. student, University of Utah "Mercury Cycling in Wetlands Adjacent to the Great Salt Lake"
2010 - Richard Beau Anderson, M.Sc. student, Univerisity of Utah "Recharge source, age, and projected flow path of submarine groundwater discharge to Great Salt Lake"
 
2011 - Anthony J. Roberts, Ph.D. student, Utah State University "Origin of Waterfowl Wintering on Great Salt Lake: A Stable Isotope Approach"
 
2012 - Rebekah Downard, Ph.D. student, Utah State University "Determining the Impact of Impoundment and Water Management on Wetland Condition around the Great Salt Lake, Utah"
 
2013 - Joel Pierson, M.Sc. student, University of Utah "Nutrient Cycling in Willard Spur, Great Salt Lake, Utah"
 
2014 - Christine Rohal, M.Sc. student, Utah State University "Effective methods for control of the widespread invasive grass, Phragmites australis: A large-scale, multi-year experiment to improve restoration of native wetland plant communities in Great Salt Lake wetlands"
 
2015 - Chris Mansfield, Undergraduate, Westminster College Is photo-­degradation an important control on methylmercury in the Great Salt Lake?
 
2016 - Derek Mallia, Ph.D. student, University of Utah "The Impacts of a Shrinking Great Salt Lake on Future Air Quality"
 

2017 -  Melody Lindsay, Ph.D. student, University of Montana "Effects of Changing Salinity on Microbialite-Associated Primary Producers and Secondary Consumers in Great Salt Lake"

You can read her full proposal here!

2018 – Katherine Barrett, Ph.D. student, University of Notre Dame "Linking Artemia To The Benthos: Do Microbialites Support Brine Shrimp Production in Great Salt Lake?" 

Recipient Video Coming Soon.

 
 

Alfred Lambourne Prize

Submissions for the 6th annual Alfred Lamborne Prize Open March 1-May 15, 2019

Click here to submit your work. 

FRIENDS celebrates the relationship between local artists and one of Utah’s most precious natural resources, Great Salt Lake. Through artistic expressions, we enhance our capacity to build awareness about the Lake and our need to preserve and protect it for the future.

In 2014, FRIENDS of Great Salt Lake established The Alfred Lambourne Prize, an annual recognition and celebration of regional creativity inspired by our inland sea. FRIENDS invited creative work inspired by the Lake in the forms of visual arts, literary arts, sound and movement. 

The prize takes its name from the renowned painter and writer Alfred Lambourne (1850-1926). Born in England, he moved with his family to the United States and settled in Salt Lake City in 1866. Lambourne’s artistic talents were put to use painting scenery for the Salt Lake Theater. He developed an early and passionate interest in Great Salt Lake, inspired in part by reading Captain Howard Stansbury’s account of the 1850 survey of the lake (Exploration and survey of the valley of the Great Salt Lake of Utah, 1852). Lambourne traveled the lake by sailboat and lived for a time on Gunnison Island in the hopes of obtaining land there through homesteading.

Lambourne is remembered for the dozens of sketches and paintings he created of Great Salt Lake as he captured facets of water, light, and land in the romantic style reminiscent of the Hudson River School painters. His writing, based upon his time on Gunnison Island, stands out as the earliest, most evocative prose penned on the Lake’s physical attributes and psychological impressions. Lambourne melded fact and fiction as he wrote first in serial fashion about the lake for The Deseret News then published these writings as Pictures of an Inland Sea (1894; 1902) and Our Inland Sea: The Story of a Homestead (1909).

Visually inspired and poetic in nature, Lambourne bestowed upon us the Lake through lyrical prose:

"There is another phenomenon to be seen at infrequent periods on the Inland Sea, one that is unpaintable, and also, I believe, entirely local. It is to be witnessed during the calm summer twilights, when the pale, fairy-like tints on the water are breathed upon by opposite currents of languid wind. As they interplay in bands, in points, in shifting isles of amber, azure and rose, the whole surface shimmers and glistens like a silken robe studded with countless pearls."

The significance of Great Salt Lake to Lambourne as he engaged in his subject across several modes of artistic expression was key in FRIENDS’ decision to name the annual arts and humanities prize after him.

Artists and authors, Hikmet Loe and Holly Simonsen, co-chair the Alfred Lambourne Prize Committee for FRIENDS of Great Salt Lake. They are responsible for administering the prize, establishing the judges, and cataloging the submissions.

Feel free to contact them at snowyegret@fogsl.org

 

blob.jpgHikmet Sidney Loe

Born and raised on the east coast, Hikmet fell in love with the arid desert lands of Utah and the environs of Great Salt Lake. She is an artist, writer, and teacher whose work draws inspiration from the smaller patterns found in the larger environment and from the changeable nature of land, water, and sky. She teaches art history at Westminster College in Salt Lake City, and teaches for the Venture Course. Her research on Robert Smithson’s earthwork the Spiral Jetty has led to her cumulative work, The Spiral Jetty Encyclo: Exploring Robert Smithson’s Earthwork through Time and Place (2017, University of Utah Press). She contributes regularly to the online magazine 15 Bytes (artistsofutah.org) and has essays included in the online site mappingslc.org. She is an active member of FRIENDS of Great Salt Lake, and in 2014 received their biennial "Friend of the Lake Award" for her outreach and dedication to issues surrounding Utah's inland sea.

http://www.hikmetsidneyloe.com

 

 

 

 

DSC04647 2

Holly Simonsen

Holly works in ecopoetic collaboration with Great Salt Lake, where her creations explore the relationship between language and ecologically disrupted environments. Although primarily a poet, her work often migrates off the page into 3D spaces. She earned her MFA from Vermont College of Fine Arts. She was a recent fellow at the Vermont Studio Center in Johnson, VT and at the Djerassi Resident Artists’ Program in Woodside, CA. She currently works as an adjunct professor of English and literature at Westminster College and as the Membership & Programs Director for FRIENDS of Great Salt Lake. Links to her published work can be found at

http://www.hsimonsen.com/

 

 


2018 5th Annual Alfred Lambourne Prize

Click here to view photographs from the event. All photographs by Charles Uibel. 

Visual Arts Winner: Kathleen Carricaburu for Allegory of the Desert. View more of Carricaburu's work by clicking here.

cu 180907 193242 2             carricaburu

 

Literary Arts Winner: Amy Brunvand for Crown of Sonnets for Great Salt Lake 

 .     cu 180907 191814

 

 

 

 

 

 

 

 

 

 

 

 

 

Movement Winner: Beth Krensky for Metaphysical Handcart. View more of Krensky's work by clicking here.

cu 180907 193346 .     

metaphysicalhandcartperf4

 

Sound Winner: Charles Uibel and Mark Boer for Pictures From A Life. View the entire submission by clicking here.

cu 180907 193424       

Screen Shot 2018 09 17 at 12.07.35 PM

 

2018 Alfred Lamboure Arts Program is sponsored in part by a Salt Lake County Zoo, Arts, & Parks Grant. ZAP is You!

zapcolorlogohoriz

 


2017 4th Annual Alfred Lambourne Prize

Visual Arts Winner: Michael Sharp for History/Prehistory 

 cu 170908 194222 84 original

 historyprehistory 2

 

 

Literary Arts Winner: Alicia Anderson for lacustrine

Screen Shot 2017 09 11 at 1.24.54 PM

 

 

Movement Winner: Kendall Fischer for Breathing Sky

cu 170908 194313 85 original

Screen Shot 2017 09 11 at 1.27.27 PM

 

Sound WInner: Stuart Wheeler for Red Lake 

cu 170908 194344 2 86 original 

cu 170908 184321 2 51 

 


2016 3rd Annual Alfred Lambourne Prize

Click here to view photos from the event.

Visual Arts Winner: Virginia Cattherall  

 61502059891 Media 01 1

 

 

 Literary Arts Winner, Maurine Haltiner

IMG 2539

   

         

Sound Winner, Jules Jimreivat & Syd Sattler

IMG 2407 

 

 

Movement Winner, Sarah Whiting & Wasatch Jr. High

IMG 2553

 

Sponsors: Yae Bryner, Allen & Julie Dodworth, Bruce Fowler, The Nature Conservancy in Utah, The Phillips Gallery, Ali Sabbah, The Sorenson Unity Center, The Taproot Foundation 


2015 2nd Annual Alfred Lambourne Prize

ALP 2015 winner

Winner : Max Rosenzweig, Visual Artist for his piece entitled Ephemeral Nonsites of the Great Salt Lake and Lake Bonneville

Sponsors : Bruce Fowler, John Milliken, Yae Bryner


2014 1st Annual Alfred Lambourne Prize

Winner : Marden Pond, Sound Artist, for his musical composition entitled "Sanctuary."

Sponsors : Bruce Fowler, Alderwood Fine Art, Will Bagley, Ben Behunin Pottery, Community Foundation of Utah, Meri DeCaria, Steve "Doc" Floor, David Glover, D. Goodell, InterNet Properties Inc, Richard Johnson, Wayne Martinson & Deb Sawyer, Capitol Hill Construction, Irving C. Smith, Springville Art Museum, XMission

 

 

 

deco3.png

Why We Care

  • That which lies nearest is best.

    Alfred Lambourne, Our Inland Sea, 1887