Click here to read the resolution.

Many thanks to those who worked hard to recognize the Lake formally!

The Utah Division of Water Quality (DWQ) has issued a draft modification for the Ground Water Discharge Permit (UGW350011) for the proposed expansion of the Kennecott Utah Copper Tailings Impoundment. Public comments are due August 12, 2013. The conservation community has a number of concerns about the adequacy and the timing of this proposed permit and is calling on DWQ to withdraw the draft permit until sufficient information is available to fully inform the permitting process and the public.

DWQ’s proposed approval now of this permit modification is premature. Approval of the enlarged footprint of the Tailings Impoundment is still under consideration by the U.S. Army Corps of Engineers, and it is likely that the Corps will require changes to that proposal which would make this permit modification moot. The Draft Environmental Impact Statement for the project will not be issued by the Corps until sometime next year, with a Final EIS unlikely until late 2014 or 2015. Both DWQ’s decision and the public comments on that decision should be informed by information produced by the EIS.

The proposed expansion is a massive project requiring several additional major, time-consuming approvals, including permission to realign four miles of the Union Pacific railroad tracks and to build an overpass bridge along 7200 West. The groundwater permit modification is not urgent.

DWQ admits that arsenic levels in the shallow groundwater have exceeded water quality standards, but refuses to consider whether the arsenic in these aquifers is contributing to the high levels of arsenic in the Great Salt Lake’s Gilbert Bay. There is no quantification of the level of arsenic pollution cased by the Tailings Impoundment or historic operations in the area – nor any plans to ascertain those levels.

DWQ makes unsubstantiated assertions that there will be no significant degradation of groundwater quality without defining what that means or suggesting any plans to prevent further degradation. DWQ admits that the weight of the Tailings Impoundment (at over 290 feet high!) will cause movement of waters in the tailings through the Bonneville Clay layer into the underlying aquifers.

DWQ makes unjustified assertions that the passive use of the Bonneville Clay layer as a liner constitutes “Best Available Technology” for minimizing discharges of pollutants, thus exempting Kennecott from installing additional liners under the expansion. This despite knowing that the clay is thin in some locations and missing in others, and that contamination of groundwater has occurred.

There are significant questions whether the waste streams authorized under this permit for placement in the Tailings Impoundment are exempt from treatment as hazardous waste (under RCRA).

There are questions whether there will be adequate measures put into place to prevent acidification of the tailings materials long term and after KUC’s mining ceases.

DWQ should wait until the completion of the EIS process - there is no reason for DWQ to issue approval of this permit at this time.

UDOT is proposing to build a $600M+ freeway through West Davis and Weber Counties. The high speed 4 lane elevated freeway will cut through neighborhoods, family farms, wildlife habitat and wetlands while increasing vehicle miles traveled, exacerbate poor air quality conditions, impact water quality, and change the landscape forever.

Attend public hearings on the proposed West Davis Freeway and let your voice be heard.



Adler, RW. 1999. Toward Comprehensive Watershed-Based Restoration and Protection for Great Salt Lake, University of Utah College of Law, Utah Law Review Vol. 1999 Number 1, 99-204 p.

Arnow, T. 1980. Water budget and water-surface fluctuations of Great Salt Lake. In J.W. Gwynn (ed.), Great Salt Lake: a scientific, historical and economic overview. Utah Geological and Mineral Survey, Salt Lake City: 255-264.

Arnow, T and DW Stephens. 1990. Hydrologic characteristics of the Great Salt Lake, Utah: 1847-1986: US Geologic Survey Water-Supply Paper 2332, 1 plate, 32 p.


Barrie, A, JE Davies, AJ Park, and CT Workman. 1989. Continuous-flow stable isotope analysis for biologists. Spectrophotometry 4:44-52.

Berthélémy-Okazaki, NJ and D Hedgecock. 1987. Effect of environmental factors on cyst formation in the brine shrimp Artemia. In P. Sorgeloos, D.A. Bengtson, W. Decleir & E. Jaspers (eds), Artemia research and its applications. Vol. 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren. Belgium: 167-182.

Birch, LC. 1948. The intrinsic rate of natural increase of an insect population. J. anim. Ecol. 17:15-26.

Brown, RA. 1980. Reproductive pattern and mode in the brine shrimp. Ecology 61: 466-470.

Brown, RA. 1982. The costs of reproduction in brine shrimp. Ecology 63:43-47.


Casella, G. and R.L. Berger. 1990. Statistical inference. Brooks/Cole. Pacific Grove, 650 pp.

Carlson, RE. 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361-369.

Cooper, SD, DW Winkler, and PH Lenz. 1984. The effect of grebe predation on a brine shrimp population. J. anim. Ecol. 53:51-64.

Conte, FP, RS Jellison and GL Starrett. 1988.Nearshore and pelagic abundances of Artemia monica in Mono Lake, California. Hydrobiologia 158: 173-181.

Christensen, RC, DW Stephens, GE Pyper, HF McCormack, and JF Weigel 1984. Quality and quantity of runoff and atmospheric deposition in urban areas of Salt Lake County, Utah, 1980-81: US Geological Survey Water- Resources Investigations Report 84-4011, 223 p.

Crumpton, WG. 1987. A simple and reliable method for making permanent mounts of phytoplankton for light and fluorescence microscopy. Limnol. Oceanogr. 32:1154-1159.


Dana, GL and PH Lenz. 1986. Effects of increasing salinity on an Artemia population from Mono Lake, California. Oecologia 68:428-436.

Dana, GL, R Jellison and JM Melack. 1990. Artemia monica cyst production and recruitment in Mono Lake, California, USA. Hydrobiologia 197: 233-243.

Dana, GL, R Jellison, and JM Melack. 1995. Effects of different natural regimes of temperature and food on survival, growth and development of Artemia monica Verrill. J. Plankton Res. 17:2117-2130.

D'Agostino, A. 1980. The vital requirement of Artemia: physiology and nutrition. In G. Persoone, P. Sorgeloos, O. Roels & E. Jaspers (eds), The brine shrimp Artemia, 2. Physiology, biochemistry, molecular biology. Universa Press, Wetteren, Belgium: 55-82.


Hammer, UT. 1986. Saline lake ecosystems of the world. Dr. W. Junk Publishers, Dordrecht, 616 pp.

Holm-Hansen, O and B Riemann. 1978. Chlorophyll-a determination: improvements in methodology. Oikos 30: 438-447.


Javor, B. 1989. Hypersaline environments: microbiology and biogeochemistry. Springer-Verlag, Berlin, 328 pp.

Jellison, R and JM Melack. 1993. Algal photosynthetic activity and its response to meromixis in hypersaline Mono Lake, California. Limnol. Oceanogr. 38: 818-837.


Kuruppu, MM and SUK Ekaratne. 1995. Ecology and population structure of the Artemia parthenogenetica population inhabiting a major saltern in Sri Lanka. Int. J. salt Lake Res. 4:117-131.


Lenz, PH. 1984. Life-history analysis of an Artemia population in a changing environment. J. Plankton Res. 6:967-983.

Lenz, PH. 1987. Ecological studies on Artemia: a review. In P. Sorgeloos, D.A. Bengtson, W. Decleir & E. Jaspers (eds), Artemia research and its applications, 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren. Belgium: 5-18.

Lenz, PH and GL Dana. 1987. Life-cycle studies in Artemia: a comparison between a sub-tropical and a temperate population. In P. Sorgeloos, D.A. Bengtson, W. Decleir & E. Jaspers (eds) Artemia research and its applications, 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren. Belgium: 88-100.


Marcarelli, AM, MD Mills and WA Wurtsbaugh. 2001. The Great Salt Lake doesn't stink... But Farmington Bay does! FRIENDS of Great Salt Lake Newsletter 7(2): 5, 13; 7(4):6.

McCormack, HF, RC Christensen, DW Stephens, GE Pyper, JF Weigel, and LS Conroy. 1983. Surface water and climatalogic data, Salt Lake County, Utah, Water Year 1981, with selected data for water years 1980 SN 1982: US Geologic Survey Open-File Report 83-694, 586p.

Melack, JM and R Jellison. 1998. Limnological conditions in Mono Lake: Contrasting monomixis and meromixis in the 1990s. Hydrobiologia 384:21-39.

Montague, CL, WR Fey and DM Gillespie. 1982. A causal hypothesis explaining predator-prey dynamics in Great Salt Lake, Utah. Ecological Modeling 17:243-270.


Persoone, G and P Sorgeloos. 1980. General aspects of the ecology and biogeography of Artemia. In G. Persoone, P. Sorgeloos, O. Roels & E. Jaspers (eds), The brine shrimp Artemia, 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren: 3-23.

Post, FJ. 1981. Microbiology of the Great Salt Lake north arm. Hydrobiologia 81:59-69.

Pyper, GE, RC Christensen, DW Stephens, HF McCormack, and LS Conroy 1981. Surface-water and climatological data, Salt Lake County, Utah. Water Year 1980: US Geological Survey Open-File Report 81-1111, 167 p.


Reiss, CS, IA McLaren, and PA Avendaño. 1999. Utility of storage lipid volumes in inferring recent trophic history of copepods. Can. J. Fish. aquat. Sci. 56:2444-2449.


Savage, A and B Knott. 1998. Artemia parthenogenetica in Lake Hayward, Western Australia. I. Interrupted recruitment into adult stages in response to seasonal limnology. Int. J. Salt Lake Res. 7: 1-12.

Simms, Steven R and Mark E. Stuart. 2002. Ancient American Indian Life in the Great Salt Lake Wetlands: Archaeological and Biological Evidence In Great Salt Lake, Utah 1980 Through 1998, edited by J. Wallace Gwynn, Utah Geological Survey Publications, Salt Lake City.

Simms, Steven R. 1999. Farmers, Foragers, and Adaptive Diversity: The Great Salt Lake Wetlands Project. In Understanding Prehistoric Lifeways in the Great Basin Wetlands: Bioarchaeological Reconstruction and Interpretation, edited by B.E. Hemphill and C. S. Larsen, pp. 21-54. University of Utah Press, Salt Lake City.

Simms, Steven R. and Anan W. Raymond. 1999 . No One Owns the Deceased! The Treatment of Human Remains From Three Great Basin Cases. (Feb 00),. In Understanding Prehistoric Lifeways in the Great Basin Wetlands: Bioarchaeological Reconstruction and Interpretation, edited by B.E. Hemphill and C. S. Larsen, pp. 8-20. University of Utah Press, Salt Lake City.

Sorgeloos, P, P Lavens, P Léger, W Tackaert, D Versichele. 1986. Manual for the culture and use of brine shrimp Artemia in aquaculture. State University of Ghent. Faculty of Agriculture, 319 pp.

Stephens, DW 1969. The physical and chemical environmental requirements of Trichoptera in the Weber River, Utah. MS thesis, Univ. of Utah, 72 p.

Stephens, DW and DM Gillespie, 1972. Community structure and ecosystem analysis of the Great Salt Lake. pp. 66-72, IN: JP Riley, ed., The Great Salt Lake and Utah's Water Resources, Proc. First Ann. Conf. Utah Section American Water Resources Assoc., Utah Water Research Lab., Logan.

Stephens, DW 1974. Limnological considerations of the Great Salt Lake, Utah. Ph.D. Dissertation, Univ. of Utah, 123 p.

Stephens, DW 1976. Liquid scintillation counting of filtered algae in primary production studies. US Geological Survey Journal of Research 4(6):753-756.

Stephens, DW and DM Gillespie. 1976. Phytoplankton production in the Great Salt Lake, Utah and a laboratory study of algal response to enrichment. Limnology and Oceanography 21(1):74-87.

Stephens, DW and DM Gillespie. 1977. Some aspects of plankton dynamics in the Great Salt Lake, Utah. Pp. 401-409, In: DC Greer, ed., Desertic Terminal Lakes, Utah Water Research Lab., Logan.

Stephens, DW. 1984. Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah: US Geological Survey Water-Resources Investigations Report 84-4056, 56 p.

Stephens, DW. 1984. Water-quality investigations of the Jordan River, Salt Lake County, Utah, 1980-82: US Geological Survey Water-Resources Investigations Report 84-4298, 45 p.

Stephens, DW. 1988. Great Salt Lake: An expanding sea in the Utah desert: US Geological Survey Yearbook for 1986, pp. 77-82.

Stephens, DW and T Arnow. 1988. Fluctuations of water level, water quality and biota of Great Salt Lake, Utah, 1847-1986: p. 181-194 In: RS Kopp and RE Cohenour eds., Cenzoic geology of western Utah, Utah Geologic Assoc. Publ. 16.

Stephens, DW and B Waddell. 1989. Selenium contamination from irrigation drainage in western United States with emphasis on Utah: pp. 165-181 In: Geology and hydrology of hazardous waste, mining-waste, waste water, and repository sites in Utah, Utah Geologic Assoc. Publication 17.

Stephens, DW. 1990. Changes in lake levels, salinity and the biological community of Great Salt Lake Utah, USA, (1947-1987): Hydrobiologia 197:130-146.

Stephens, DW. 1992. Selenium contamination of waterfowl areas in Utah and options for management, p. 301- 311 In Robarts RD and ML Bothwell, eds., Aquatic ecosystems in semi-arid regions Implications for resource management: National Hydrology Research Institute Symposium Series 7, Environmental Canada, Saskatoon.

Stephens, DW and LJ Gerner. 1996. Utah wetland resources: U.S. Geological Survey Water-Supply Paper 2425, p. 375-380.

Stephens, DW. 1998.Salinity-induced changes in the aquatic ecosystem of Great Salt Lake, Utah: pp. 1-8 in Pitman, J., and A. Carroll, eds., Modern and Ancient Lakes, Utah Geological Association, Salt Latke City, Utah.

Stephens, DW. 1998.Salinity-induced changes in the aquatic ecosystem of Great Salt Lake, Utah: pp. 1-8 in Pitman, J., and A. Carroll, eds., Modern and Ancient Lakes, New problems and perspectives, Utah Geological Association, Salt Latke City, Utah.

Stephens, DW and P Birdsey. In press. Population dynamics of the brine shrimp, Artemia franciscanis, in Great Salt Lake and regulation of commercial shrimp harvest. Hydrobiologia xxx.

Sterner, RW, DD Hagemeier, WL Smith, and RF Smith. 1993. Phytoplankton nutrient limitation and food quality for Daphnia. Limnol. Oceanogr. 38:857-871.

Sturm, PA, GC Sanders, and KA Allen. 1980. The brine shrimp industry on the Great Salt Lake. In J.W. Gwynn (ed.), Great Salt Lake: a scientific, historical and economic overview. Utah Geological and Mineral Survey, Salt Lake City: 243-248.


Tayler, PL, LA Hutchinson, and MK Muir. 1980. Heavy metals in the Great Salt Lake, Utah. In J.W. Gwynn (ed.), Great Salt Lake: a scientific, historical and economic overview. Utah Geological and Mineral Survey, Salt Lake City: 195-200.

Torrentera, L. 1993. Ecology and evolution of Yucatan peninsula Artemia. Ph.D. thesis. University of Wisconsin-Madison, Wisconsin, USA, 104 pp.


Vanhaecke, P and P Sorgeloos. 1980. International study on Artemia. XIV. Growth and survival of Artemia larvae of different geographical origin in a standard culture test. Marine Ecology - Progress Series 3: 303-307.


Wear, RG and SJ Haslett. 1986. Effects of temperature and salinity on the biology of Artemia franciscana Kellogg from Lake Grassmere, New Zealand. 1. Growth and mortality. J. exp. Mar. Biol. Ecol. 98:153-166

Wear, RG, SJ Haslett, and NL Alexander. 1986. Effects of temperature and salinity on the biology of Artemia franciscana Kellogg from Lake Grassmere, New Zealand. 2. Maturation, fecundity, and generation times. J. exp. Mar. Biol. Ecol. 98:167-183.

Wear, RG and SJ Haslett. 1987. Studies on the biology and ecology of Artemia from Lake Grassmere, New Zealand. In: P. Sorgeloos, D.A. Bengtson, W. Decleir & E. Jaspers (eds), Artemia research and its applications, 3. Ecology, culturing, use in aquaculture. Universa Press. Wetteren, Belgium: 101-133.

Wetzel, RG and GE Likens. 1990. Limnological analyses, 2nd ed. Springer-Verlag. New York, 391pp.

Wirick, CW. 1972. The Dunaliella-Artemia plankton community of the Great Salt Lake, Utah M.S. Thesis, Dept. of Biology, University of Utah, 20 pp.

Wurtsbaugh, W and J Cech. 1983. Growth and activity in Gambusia affinis fry: Temperature and ration effects. Trans. am. Fish. Soc. 112: 653-660.

Wurtsbaugh, W. 1988. Iron, molybdenum and phosphorus limitation of N2 fixation maintains nitrogen deficiency of plankton in the Great Salt Lake drainage (Utah, USA). Verh. int. Ver. Limnol. 23:121-130.

Wurtsbaugh, WA. 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89:168-175.

Wurtsbaugh, WA and TS Berry. 1990. Cascading effects of decreased salinity on the plankton, chemistry, and physics of the Great Salt Lake (Utah). Can. J. Fish. aquat. Sci. 47: 100-109.

Wurtsbaugh, WA, and ZM Gliwicz. In press. Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah. Hydrobiologia.

The 2018 Great Salt Lake Issues Forum will be May 9,10 + 11th at the University of Utah Fort Douglas Officers Club. The program title is Lake Elevated. Keeping the Lake Great. 

Since 1996, we have been hosting the GSL Issues Forum as a way to encourage constructive dialogue about the future of the Lake’s ecosystems and its resources, and to illuminate the complexities involved in research, management, and planning for the Lake. We do this by exploring the Lake from many different angles and in many different contexts--far beyond its resource development potential--to emphasize its ecological value as well as the intrinsic value it contributes to our history, culture, and spirit. And because Great Salt Lake is hemispherically important to millions of migratory birds, the forum reaches beyond our own backyard into the region, the hemisphere, and to global communities with saline systems to learn from others who are working with similar challenges. 

With our growing awareness of trends in near record low elevations of the Lake coupled with less than stellar snowpack conditions and climate change, the time is ripe to bring people together to engage in timely and productive discussions about Utah’s water future and how Great Salt Lake fits into that picture. 

Be a part of something Great as we bring together the artists, historians, scientists, educators, policy makers, academics, and industry representatives, all of whom recognize the tremendous asset this unique ecosystem is to our culture, our community, and our consciousness. 

More program details coming soon. 

Issues Forum 5




issues forum swans


2012 GSLIssues Postcard invite v2 Page 1





Great Salt Lake Research - Good Science Informs Good Management  

The GSL Ecosystem is a complex and unique saline ecosystem that is locally, regionally, hemispherically, and globally important. It provides a valuable mix of habitats from islands, open water, wetland complexes and uplands for native plant and wildlife populations. It also provides critical resting, staging and nesting capacity for over 260 avian species and millions of migratory birds. 

The Lake is an important economic contributor to the State of Utah through a variety of ecosystem services that include mineral extraction, brine shrimp, recreation and tourism among others. It provides $1.3 B annually to the state’s economy. 

The Division of Forestry, Fire and State Lands in the Department of Natural Resources has jurisdictional responsibility for managing the Lake sustainably for future generations. The system is a hotbed of potential research opportunities that can help inform effective management decisions toward that end.

What follows are examples of some of the resources that are in place to help identify research needs and fund proposals that generate valuable science and insights about the system. These serve to increase our understanding so we can work to protect Great Salt Lake.  

Meetings for all of these standing bodies are open to the public.  We encourage you to attend these meetings and share your voice.  In addition to good science, good management is informed by a well-educated community.


Utah Division of Forestry, Fire & State Lands


Additional Great Salt Lake Organizations 






Congratulations to Clint Carney, 2019 Doyle W. Stephens Scholarship Winner in the Graduate Division, and Chloe Fender, 2019 Doyle W. Stephens Scholarship Winner in the Undergraduate Division. 

clint carney        Chloe Fender

FRIENDS of Great Salt Lake established the Doyle W. Stephens scholarship to celebrate Stephens' remarkable scientific contributions toward understanding the Great Salt Lake Ecosystem. This scholarship provides support to undergraduate and graduate students engaged in new or on-going research that focuses on Great Salt Lake and its ecosystem. 

Eligibility: Applicants must be undergraduate or graduate students currently enrolled at an accredited college or university. Individuals who have previously received this award are not eligible. The award may be used to support laboratory or field research, attendance at professional meetings, or other activities that further the understanding or protection of the Great Salt Lake ecosystem. Research located anywhere in the Great Salt Lake watershed can qualify for this award. We will consider projects from any academic field (for instance: ecology, biology, chemistry, physics, geography, geology, urban planning, social sciences, communications, education, economics, tourism, engineering, etc.). 

Stay tuned for the 2020 Doyle W. Stephens Scholarship Application dates. 

History of Dr. Doyle W. Stephens and the scholarship created in his name.

Doyle Stephens was born in Ogden, Utah, in 1944. He received his BS in Biology from Weber State College in 1967, his MS in Entomology in 1969 and his PhD in Limnology from the University of Utah in 1974.

At the time of his death in May, 2000, he had been a research hydrologist for the U.S. Geological Survey for nearly 20 years. In 2001, he was posthumously awarded the Governor's Medal for Science and Technology.

Doyle Stephens made significant contributions toward public awareness of critical issues relating to Utah's natural resources and environment. Of particular importance were his efforts to increase public knowledge and awareness of the Great Salt Lake Ecosystem. As a contributor to the state's Great Salt Lake Ecosystem project, Doyle's work on Great Salt Lake shrimp ecology helped increase understanding about population dynamics of the shrimp in the lake and factors affecting the structure and density of the population.

"Stephens leaves a broad and deep body of scientific work. His legacy is that his work's contribution to the environment, to the economy, and to the quality of life in Utah will not diminish over time but will continue to grow," says Don Leonard, President, Utah Artemia Association.

Another colleague observed: "Icebergs don't happen in Great Salt Lake, save one. Before he left us so prematurely, we only got to see the tip of Doyle Stephens' impact on the work of almost every other Great Salt Lake investigator. As time passes, we will begin to understand the extent of Doyle's work and the encouragement he lent to others to wonder and search along with him."


Click here to donate. With your help, FRIENDS can continue to support and promote research critical to the conservation of Great Salt Lake.

Thank You To Our 2019 Donors Thank You To Our 2018 Donors Thank You To Our 2017 Donors  Thank you to our 2016 Donors 
Great Salt Lake Brine Shrimp Cooperative, Inc. Great Salt Lake Brine Shrimp Cooperative, Inc.  Lynn & Bradley Carroll Jim Carter
Great Salt Lake Audubon Great Salt Lake Audubon  Gail Blattenberger Jim and Edna Ehleringer
 Mark Brunson The Nature Conservancy  Robert Baskin & Lisa Watts Baskin Jody Gunderson & Bill Heeschen
 Joe Gardner Bill Heeschen & Judy Gunderson  Joe Gardner & Nancy Bush Vincie Giles
 Vincie Giles    The Nature Conservancy Joseph Hicks
 Bill Heeschen & Judy Gunderson    Joanna Endter-Wada Frank Jarvis
 Laird Norton


 Ali Sabbah Bill Trevithick
 Chris Montague    Great Salt Lake Brine Shrimp Cooperative, Inc. Joanna Endter-Wada
 Jeff Richards     William and Donna Vogel
 Kenneth Sassen     Bruce and Kathy Waddell
Pete Webb      

Doyle W. Stephens Scholarship Recipients 

2003 - Henry Hyochang Lee, Ph.D. student, University of Utah "The economics of the brine shrimp resource in Great Salt Lake"

2004 - Ashlee Allred, Undergraduate, Westminster College "Phytoprotective pigment production by Great Salt Lake microbes"

2005 - Carla Koons Trentelman, Ph.D. student, Utah State University "Place attachment among neighbors of Great Salt Lake and its environs"

2006 & 2007 - Misty Riddle, Undergraduate, Westminster College "Microbial Influence in the Great Salt Lake: Identification of Great Salt Lake Microbes Associated with the Brine Shrimp, Artemia Franciscana"
2008 - Christy Cottrell, Undergraduate Weber State College "Metagenomic diversification of Great Salt Lake Brine Flies"
2009 - Gregory T. Carling, Ph.D. student, University of Utah "Mercury Cycling in Wetlands Adjacent to the Great Salt Lake"
2010 - Richard Beau Anderson, M.Sc. student, Univerisity of Utah "Recharge source, age, and projected flow path of submarine groundwater discharge to Great Salt Lake"
2011 - Anthony J. Roberts, Ph.D. student, Utah State University "Origin of Waterfowl Wintering on Great Salt Lake: A Stable Isotope Approach"
2012 - Rebekah Downard, Ph.D. student, Utah State University "Determining the Impact of Impoundment and Water Management on Wetland Condition around the Great Salt Lake, Utah"
2013 - Joel Pierson, M.Sc. student, University of Utah "Nutrient Cycling in Willard Spur, Great Salt Lake, Utah"
2014 - Christine Rohal, M.Sc. student, Utah State University "Effective methods for control of the widespread invasive grass, Phragmites australis: A large-scale, multi-year experiment to improve restoration of native wetland plant communities in Great Salt Lake wetlands"
2015 - Chris Mansfield, Undergraduate, Westminster College Is photo-­degradation an important control on methylmercury in the Great Salt Lake?
2016 - Derek Mallia, Ph.D. student, University of Utah "The Impacts of a Shrinking Great Salt Lake on Future Air Quality"

2017 -  Melody Lindsay, Ph.D. student, University of Montana "Effects of Changing Salinity on Microbialite-Associated Primary Producers and Secondary Consumers in Great Salt Lake"

You can read her full proposal here!

2018 – Katherine Barrett, Ph.D. student, University of Notre Dame "Linking Artemia To The Benthos: Do Microbialites Support Brine Shrimp Production in Great Salt Lake?" 

Recipient Video


Alfred Lambourne Prize

FRIENDS celebrates the relationship between local artists and one of Utah’s most precious natural resources, Great Salt Lake. Through artistic expressions, we enhance our capacity to build awareness about the Lake and our need to preserve and protect it for the future.

In 2014, FRIENDS of Great Salt Lake established The Alfred Lambourne Prize, an annual recognition and celebration of regional creativity inspired by our inland sea. FRIENDS invited creative work inspired by the Lake in the forms of visual arts, literary arts, sound and movement. 

The prize takes its name from the renowned painter and writer Alfred Lambourne (1850-1926). Born in England, he moved with his family to the United States and settled in Salt Lake City in 1866. Lambourne’s artistic talents were put to use painting scenery for the Salt Lake Theater. He developed an early and passionate interest in Great Salt Lake, inspired in part by reading Captain Howard Stansbury’s account of the 1850 survey of the lake (Exploration and survey of the valley of the Great Salt Lake of Utah, 1852). Lambourne traveled the lake by sailboat and lived for a time on Gunnison Island in the hopes of obtaining land there through homesteading.

Lambourne is remembered for the dozens of sketches and paintings he created of Great Salt Lake as he captured facets of water, light, and land in the romantic style reminiscent of the Hudson River School painters. His writing, based upon his time on Gunnison Island, stands out as the earliest, most evocative prose penned on the Lake’s physical attributes and psychological impressions. Lambourne melded fact and fiction as he wrote first in serial fashion about the lake for The Deseret News then published these writings as Pictures of an Inland Sea (1894; 1902) and Our Inland Sea: The Story of a Homestead (1909).

Visually inspired and poetic in nature, Lambourne bestowed upon us the Lake through lyrical prose:

"There is another phenomenon to be seen at infrequent periods on the Inland Sea, one that is unpaintable, and also, I believe, entirely local. It is to be witnessed during the calm summer twilights, when the pale, fairy-like tints on the water are breathed upon by opposite currents of languid wind. As they interplay in bands, in points, in shifting isles of amber, azure and rose, the whole surface shimmers and glistens like a silken robe studded with countless pearls."

The significance of Great Salt Lake to Lambourne as he engaged in his subject across several modes of artistic expression was key in FRIENDS’ decision to name the annual arts and humanities prize after him.

Artist and writer, Holly Simonsen, directs the Alfred Lambourne Prize Program for FRIENDS of Great Salt Lake. She is responsible for administering the prize, establishing the judges, and cataloging the submissions.

Feel free to contact her at 

DSC04647 2

Holly Simonsen

Holly works in ecopoetic collaboration with Great Salt Lake, where her creations explore the relationship between language and ecologically disrupted environments. Although primarily a poet, her work often migrates off the page into 3D spaces. She earned her MFA from Vermont College of Fine Arts. She was a recent fellow at the Vermont Studio Center in Johnson, VT and at the Djerassi Resident Artists’ Program in Woodside, CA. She currently works as an adjunct professor of English and literature at Westminster College and as the Membership & Programs Director for FRIENDS of Great Salt Lake. Links to her published work can be found at




2019 6th Annual Alfred Lambourne Prize

Visual Arts Winner: Christine Baczek and David Hyams for Whale of a Tale

cu 190906 202213 2

Literary Arts Winner: Ellen Weist for Eight Views of the Lake

cu 190906 200828

Movement Winner: Mikenzie Hendricks for PLACED PIECES ensared | calcified | discovered | displayed

cu 190906 202324

 Sound Winner: Kate McLeod for The Great Salt Lake Visited

cu 190906 201512


2019 Alfred Lamboure Arts Program is sponsored in part by a Salt Lake County Zoo, Arts, & Parks Grant. ZAP is You!



2018 5th Annual Alfred Lambourne Prize

Click here to view photographs from the event. All photographs by Charles Uibel. 

Visual Arts Winner: Kathleen Carricaburu for Allegory of the Desert. View more of Carricaburu's work by clicking here.

cu 180907 193242 2             carricaburu


Literary Arts Winner: Amy Brunvand for Crown of Sonnets for Great Salt Lake 

 .     cu 180907 191814














Movement Winner: Beth Krensky for Metaphysical Handcart. View more of Krensky's work by clicking here.

cu 180907 193346 .     



Sound Winner: Charles Uibel and Mark Boer for Pictures From A Life. View the entire submission by clicking here.

cu 180907 193424       

Screen Shot 2018 09 17 at 12.07.35 PM


2018 Alfred Lamboure Arts Program is sponsored in part by a Salt Lake County Zoo, Arts, & Parks Grant. ZAP is You!



2017 4th Annual Alfred Lambourne Prize

Visual Arts Winner: Michael Sharp for History/Prehistory 

 cu 170908 194222 84 original

 historyprehistory 2



Literary Arts Winner: Alicia Anderson for lacustrine

Screen Shot 2017 09 11 at 1.24.54 PM



Movement Winner: Kendall Fischer for Breathing Sky

cu 170908 194313 85 original

Screen Shot 2017 09 11 at 1.27.27 PM


Sound WInner: Stuart Wheeler for Red Lake 

cu 170908 194344 2 86 original 

cu 170908 184321 2 51 


2016 3rd Annual Alfred Lambourne Prize

Click here to view photos from the event.

Visual Arts Winner: Virginia Cattherall  

 61502059891 Media 01 1



 Literary Arts Winner, Maurine Haltiner

IMG 2539



Sound Winner, Jules Jimreivat & Syd Sattler

IMG 2407 



Movement Winner, Sarah Whiting & Wasatch Jr. High

IMG 2553


Sponsors: Yae Bryner, Allen & Julie Dodworth, Bruce Fowler, The Nature Conservancy in Utah, The Phillips Gallery, Ali Sabbah, The Sorenson Unity Center, The Taproot Foundation 

2015 2nd Annual Alfred Lambourne Prize

ALP 2015 winner

Winner : Max Rosenzweig, Visual Artist for his piece entitled Ephemeral Nonsites of the Great Salt Lake and Lake Bonneville

Sponsors : Bruce Fowler, John Milliken, Yae Bryner

2014 1st Annual Alfred Lambourne Prize

Winner : Marden Pond, Sound Artist, for his musical composition entitled "Sanctuary."

Sponsors : Bruce Fowler, Alderwood Fine Art, Will Bagley, Ben Behunin Pottery, Community Foundation of Utah, Meri DeCaria, Steve "Doc" Floor, David Glover, D. Goodell, InterNet Properties Inc, Richard Johnson, Wayne Martinson & Deb Sawyer, Capitol Hill Construction, Irving C. Smith, Springville Art Museum, XMission




Range-Wide Migratory Bird Conservation Through Linking Partnerships

A Hemispheric Perspective

"Great Salt Lake is the site of one of the largest shorebird concentrations in the world. If a light were lit where each shorebird began its journey, a map of Alaska, Canada, and the northwestern US would shine as with stars in the night sky. Add a light for each destination and the map would glitter from Utah south through Mexico and Central America to the tip of South America." Ella Sorensen - Great Salt Lake Naturalist

The Utah Linking Initiative participates in connecting people along a migratory bird pathway that extends from the Chaplin and Quill Lakes of Canada, through the Great Salt Lake of the United States, to the Marismas Nacionales of Mexico and beyond.

Linking promotes range-wide conservation of migratory birds that each community shares and the endemic birds that frequent these environments. As Linking partners we work within our communities and cooperate internationally to preserve these critical areas for their ecological values, and the economic, educational, social and cultural wellbeing of the people who live near them.

In the western hemisphere, Great Salt Lake serves as a major resting, staging and nesting site for millions of migratory birds as they travel between their winter and summer habitats. In the spring, American white pelicans, American avocets, Black-necked stilts, Marbled godwits and Peregrine falcons, to name a few, make their way to the upper reaches of Canada to the province of Sasketchewan. In the fall, they return through Great Salt Lake, then migrate south to Nayarit, Mexico or beyond.

The promise that these seasonal habitats will be there to receive them during migration is contingent upon a number of factors. Ironically, these factors are the very ones that have been identified as major threats to the Great Salt Lake Ecosystem; development in wetland and upland habitats, diversion of water to those habitats, discharges that affect water quality for the fauna and flora, and ignorance about the importance of these habitats for migrating birds.

Preserving these hemispheric habitats and the bird species that rely on them is called range wide migratory bird conservation and requires international cooperation or "linking partnerships" to achieve such a goal. A linking partnership exists between Canada, the United States, Mexico and South America. The hope is that through communication, education and shared research; migratory bird species and their habitats will be protected throughout the hemisphere.

Learn more here: Linking Communities, Wetlands and Migratory Birds Initiative

To find out more about our organization and Great Salt Lake, please contact us.

FRIENDS of Great Salt Lake

150 South 600 East Suite 5D
Salt Lake City, Utah

Phone: (801) 583-5593



Why We Care

  • How might we appropriately care for something if we do not know about it? How can we as citizens make informed decisions, without first being informed? We cannot.

    Bruce Thompson, FRIENDS of Great Salt Lake