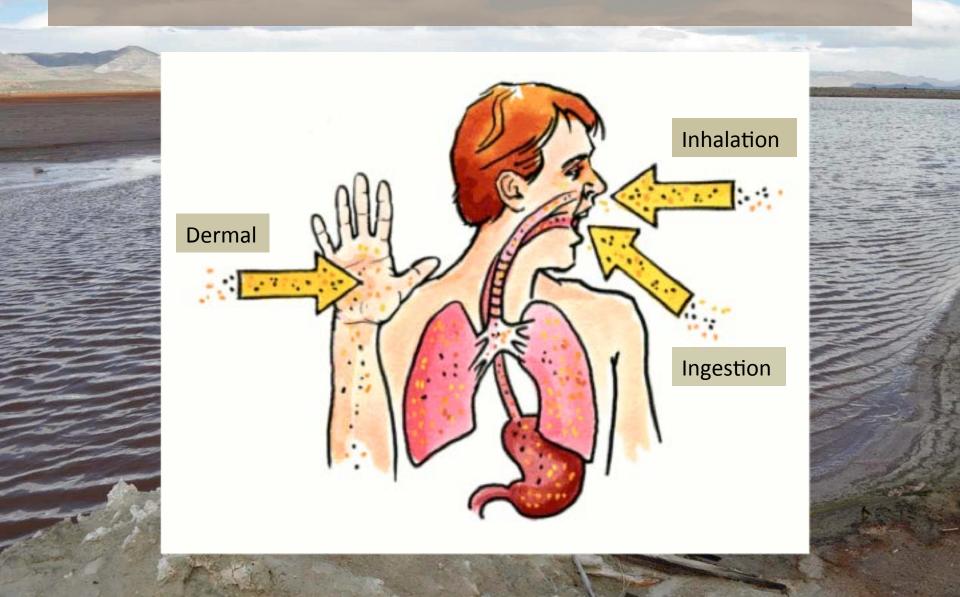


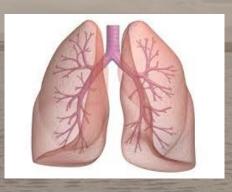
Human Toxicological Risk Assessment Principles


Documents used:

Phase 1A Attachment 10B Site Photographs

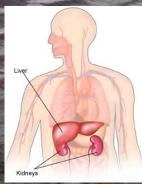
Outline

- Toxicity
- Non-Carcinogenic Hazard
 - Carcinogenic Risk
 - Site Specific Risk


Toxicity – Exposure Route

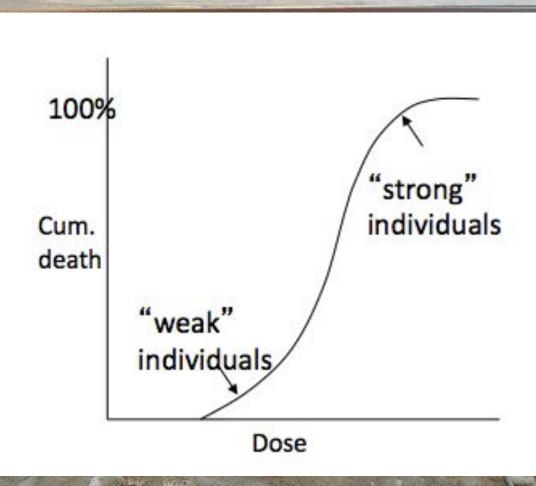
Toxicity – Target Organs

- Inhalation
 - Lungs: most detrimental effects
- Ingestion
 - Gastrointestinal Tract
 - Liver
 - Kidneys
- Dermal
 - Skin
 - Vascular system



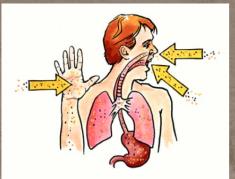
Toxicity — Fate

- hydrophobic compounds:
 end up in fatty tissues
- Inorganic ions: end up in bone (such as lead, radium, and fluoride)
- heavy metals: end up in the kidney and liver



Toxicity - Dose

"everything is a poison given a sufficient dose"



For a given dose, there will be a range of responses based on variability in the population in:

- Age
- Sex
- Diet
- Overall- health
- Genetics

Non-carcinogenic Hazard

- Reference Dose (R_fD):
 - Based on LOAEL (lowest observable adverse effects level) or NOAEL (no observable adverse effects level) from dose-response relationships

 Dose-response data is taken from animal studies with species as close to human as possible

- Reference Dose (R_fD):
 - reduced by safety factors (1/10) to account for the following:
 - 1/10 for non-human subjects
 - 1/10 for sub-chronic versus chronic study
 - 1/10 for LOAEL versus NOAEL

Non-carcinogenic Hazard

- What is a safe Reference Dose (R_fD)?
- Hazard = Intake/ R_fD
 - –A safe number for non-carcinogenic effects is <1.0</p>

Concentration Contact Rate Exposure Frequency Duration

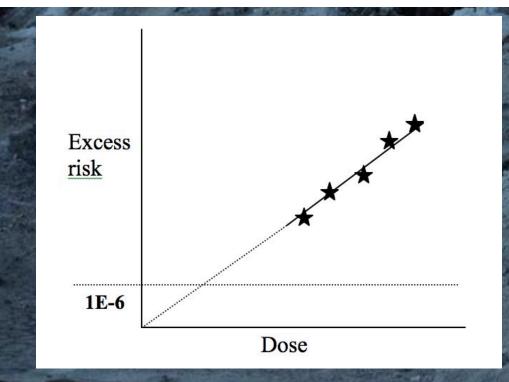
Intake = $I = \frac{(C)(CR)(EF)(ED)}{(BW)(AT)} = \frac{mg_{compound}}{kg_{body\ weight}day}$

Body Weight

Averaging Time

Non-Carcinogenic Hazard Example

 Suppose Jimmy eats a bowl of rice 4 times per week that contains 50 ng of arsenic per bowl for 40 years. Is his intake safe?


$$R_f D = 3.0E - 4 \frac{mg}{kg * day}$$

$$Hazard = \frac{\left(1.5 \frac{kg * day}{mg}\right)}{3.0E - 4 \frac{mg}{kg * day}} = 2.73$$

Yes, because the hazard is greater than 1.0

Excess Carcinogenic Risk

Excess carcinogenic risk =
$$(I)(SF) = \frac{mg}{kg - day} \frac{excess \ risk}{mg}$$
Slope Factor $\frac{mg}{kg - day} = \frac{mg}{kg - day} = \frac{mg}{kg - day}$

Excess Carcinogenic Risk Example

 Suppose Jimmy eats a bowl of rice 4 times per week that contains 50 ng of arsenic per bowl for 40 years. What is his excess risk of developing cancer?

$$slope\ factor = 1.5 \frac{kg * day}{mg}$$

$$Intake = \frac{100 \frac{\mu g}{day} \frac{mg}{1000 \mu g} * \frac{209 \ days}{year} 40 \ years}{70 \ kg * \frac{365 days}{year} * 40 \ years} = 8.18E - 4 \frac{mg}{kg * day}$$

Excess Risk =
$$\left(1.5 \frac{kg * day}{mg}\right) * \left(8.18E - 4 \frac{mg}{kg * day}\right) = 1.23E - 3$$

 Because this risk is greater than 1E-6 (1 in 1 million cancer background level) this is a high risk.

Human Toxicology: Comparative Risk

Table 2 Some Commonplace Risks (mean values with uncertainty)

Action	Lifetime Risk	Uncertainty
Motor vehicle accident (total)	1.7 x 10 ⁻²	10≈
Motor vehicle accident (pedestrian only)	2.9×10^{-3}	10≈
Home accidents	7.7×10^{-3}	5≈
Electrocution	3.7×10^{-4}	5≈
Air pollution, eastern United States	1.4×10^{-2}	Factor of 00 downward only
Cigarette smoking, one pack per day	2.5×10^{-1}	Factor of 3
Sea-level background radiation (except	1.4×10^{-3}	Factor of 3
radon)		
All cancers	2 x 10 ⁻¹	10≈
Four tablespoons peanut butter per day	6 x 10 ⁻⁴	Factor of 3
Drinking water with EPA limit of	4 x 10 ⁻⁵	Factor of 10
chloroform		
Drinking water with EPA limit of	1×10^{-7}	Factor of 10
trichloroethylene		
Alcohol, light drinker	1 x 10 ⁻³	Factor of 10
Police killed in line of duty (total)	1.5 x 10 ⁻²	20≈
Police killed in line of duty (by felons)	9.1×10^{-3}	10≈
Frequent flying professor	4×10^{-3}	50≈
Mountaineering (mountaineers)	4×10^{-2}	50≈

Comparative Carcinogenic Risk

RISKS WHICH PRODUCE A PROBABILITY OF DEATH OF 0.000001 (1 DEATH IN 1 MILLION)

3	Cigarettes	Cancer, heart disease	
2 months	Of living with a cigarette smoker	Cancer, heart disease	
0.5 liter	Wine	Cirrhosis of the liver	
40 tablespoons	Peanut butter	Liver and other cancer caused by aflatoxin	
30 cans	Diet soda	Cancer caused by saccharin	
2 months	In stone or brick building	Cancer caused by radioactivity	
6,000 miles	Jet flying	Cancer caused by cosmic ray	
2 months	Visit to Denver	Cancer caused by cosmic rays	
2 days	In NY or Boston	Air pollution	
1/12	Yearly diagnostic X-ray dose	Cancer	

Toxins at the Site

Dioxins:

- Toxic dioxins among most potent human carcinogens
- Non-cancer risks:
 - Strong correlation with diabetes
 - Immunotoxicity

Hexachlorobenzene (HCB):

- Bioaccumulates in fatty tissue (takes 15 years to rid HCB from the body)
- Probable human carcinogen

Non-cancer risks:

- Linked to diabetes
- Immunotoxicity (can lead to cancer)
- Liver damage
- Miscarriage/infant death

Toxins at the Site

Contaminant	Maximum Concentration	Location	Media
Dioxin (TEQ)	1.1 ppm	Central Ditch	Soil
Dioxin (TEQ)	2.41E-6 ppm	Monitoring Well 8A	Groundwater
НСВ	2100 ppm	Central Ditch	Soil
НСВ	2.8 ppb	Monitoring Well 8A	Groundwater
РСВ	75.02 ppm	Main Ditch	Soil
РСВ	NA	NA	Groundwater

Human Toxicology: Carcinogenic & Non-Carcinogenic

	Waste Management Unit	Estimated Cancer Risk
	Central Ditch	8 in 1,000
	Western Ditch	3 in 1,000
	Chlorine Ditch	2 in 1,000
	Main Ditch	2 in 1,000
	Old Waste Pond-Inlet Area	5 in 10,000
	400 Acre Waste Pond	4 in 10,000
Ź	Courtyard	2 in 10,000
	Old Waste Pond-Area Away from Inlet	1 in 10,000
	Gypsum Pile	9 in 100,000
-	Boron Ditch	9 in 1,000,000
1	Smut Pile	1 in 1,000,000
	Barium Sulfate Area	2 in 10,000,000

Any risk above 1 in 1 million is considered elevated and unsafe

Degrandchamp Expert Report 2007

Human Toxicology: Carcinogenic & Non-Carcinogenic

No line in the contract of	Contaminant	Average Body Burden	Maximum Body Burden (ppt)	Average Carcinogenic Risk	Maximum Carcinogenic Risk	Average Non- Carcinogenic Hazard
	HCB*	3.4 ppb	19.0 ppb	NA	2 in 10,000	2.7 X safe levels
	Dioxin**	41.5 ppt	175.9 ppt	8.2 in 1000	2.5 in 100	5 X safe levels

^{*}Degrandchamp Expert Report, 2007

^{**}Degrandchamp Expert Rebuttal Report 2007